Journal of Clinical Research in Paramedical Sciences

Published by: Kowsar

Effect of Exercise Training and Middle-Age on Pathological and Physiological Cardiac Hypertrophy

Behrouz Baghaiee 1 , * , Marefat Siahkouhian 2 , Pouran Karimi 3 , Ana Maria Botelho Teixeira 4 , Saeed Dabagh Nikoo Kheslat 5 and Khadije Ebrahimi 6
Authors Information
1 Department of Physical Education and Sports Science, Jolfa Branch, Islamic Azad University, Jolfa, Iran
2 Department of Physical Education and Sports Science, University of Mohaghegh Ardabili, Ardabil, Iran
3 Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4 Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
5 Department of Exercise Physiology, Faculty of Sport Sciences and Physical Education, University of Tabriz, Tabriz, Iran
6 Department of Physical Education and Sport Science, Marand Branch, Islamic Azad University, Marand, Iran
Article information
  • Journal of Clinical Research in Paramedical Sciences: June 2018, 7 (1); e79968
  • Published Online: June 27, 2018
  • Article Type: Review Article
  • Received: June 2, 2017
  • Accepted: November 13, 2017
  • DOI: 10.5812/jcrps.79968

To Cite: Baghaiee B, Siahkouhian M, Karimi P, Botelho Teixeira A M, Dabagh Nikoo Kheslat S, et al. Effect of Exercise Training and Middle-Age on Pathological and Physiological Cardiac Hypertrophy, J Clin Res Paramed Sci. 2018 ; 7(1):e79968. doi: 10.5812/jcrps.79968.

Abstract
Copyright © 2018, Journal of Clinical Research in Paramedical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Context
2. Effects of Aging on the Heart
3. Cardiac Hypertrophy
4. Conclusions
Footnote
References
  • 1. Czuriga D, Papp Z, Czuriga I, Balogh A. Cardiac aging-a review. Eur Surg Res. 2011;43(2):69-77. doi: 10.1007/s10353-011-0600-3.
  • 2. Lee HY, Oh BH. Aging and arterial stiffness. CIRC J. 2010;74(11):2257-62. doi: 10.1253/circj.CJ-10-0910.
  • 3. Howlett KF, Sakamoto K, Hirshman MF, Aschenbach WG, Dow M, White MF, et al. Insulin signaling after exercise in insulin receptor substrate-2-deficient mice. Diabetes. 2002;51(2):479-83. [PubMed: 11812758].
  • 4. Rosen BD, Fernandes VR, Nasir K, Helle-Valle T, Jerosch-Herold M, Bluemke DA, et al. Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dyssynchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2009;120(10):859-66. doi: 10.1161/CIRCULATIONAHA.108.787408. [PubMed: 19704101]. [PubMed Central: PMC2751872].
  • 5. Dai DF, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med. 2009;19(7):213-20. doi: 10.1016/j.tcm.2009.12.004. [PubMed: 20382344]. [PubMed Central: PMC2858758].
  • 6. De Meyer GR, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev. 2010;15(5):423-30. doi: 10.1007/s10741-010-9166-6. [PubMed: 20383579].
  • 7. Hotta H, Uchida S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr Gerontol Int. 2010;10 Suppl 1:S127-36. doi: 10.1111/j.1447-0594.2010.00592.x. [PubMed: 20590828].
  • 8. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247-57. doi: 10.1002/emmm.201000080. [PubMed: 20597104]. [PubMed Central: PMC3377325].
  • 9. Tartibian B, Botelho Teixeira AM, Baghaiee B. Moderate intensity exercise is associated with decreased angiotensin-converting enzyme, increased beta2-adrenergic receptor gene expression, and lower blood pressure in middle-aged men. J Aging Phys Act. 2015;23(2):212-20. doi: 10.1123/japa.2013-0136. [PubMed: 24809305].
  • 10. Ma Y, Chiao YA, Zhang J, Manicone AM, Jin YF, Lindsey ML. Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microsc Microanal. 2012;18(1):81-90. doi: 10.1017/S1431927611012220. [PubMed: 22153350]. [PubMed Central: PMC3972008].
  • 11. Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, et al. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging. 2013;6(6):672-83. doi: 10.1016/j.jcmg.2012.09.020. [PubMed: 23643283]. [PubMed Central: PMC3683385].
  • 12. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part III: cellular and molecular clues to heart and arterial aging. Circulation. 2003;107(3):490-7. [PubMed: 12551876].
  • 13. Anton B, Vitetta L, Cortizo F, Sali A. Can we delay aging? The biology and science of aging. Ann N Y Acad Sci. 2005;1057:525-35. doi: 10.1196/annals.1356.040. [PubMed: 16399917].
  • 14. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation. 2003;107(1):139-46. [PubMed: 12515756].
  • 15. Baghaiee B, Siahkuhian M, Hakimi M, Bolboli L, Dehrashid A. [The Effect Paraoxonase-1, Hydrogen Peroxide and Adiponectin Changes on Systolic and Diastolic Blood Pressure of Men’s with High Blood Pressure Fallowing to 12 Week Moderate Aerobic exercise]. JSKUMS. 2016;18:81-92. Persian.
  • 16. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003;107(2):346-54. [PubMed: 12538439].
  • 17. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245-62. doi: 10.1016/j.yjmcc.2016.06.001. [PubMed: 27262674].
  • 18. Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010;120(5):1506-14. doi: 10.1172/JCI40096. [PubMed: 20407209]. [PubMed Central: PMC2860916].
  • 19. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446(7134):444-8. doi: 10.1038/nature05602. [PubMed: 17334357].
  • 20. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092. [PubMed: 23684677].
  • 21. Baghaiee B, Nakhostin-Roohi B, Siahkuhian M, Bolboli L. [Effect of oxidative stress and exercise-induced adaptations]. J Gorgan Univ Med Sci. 2015;17(2):1-14. Persian.
  • 22. Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart JA Jr. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev. 2004;9(1):33-42. doi: 10.1023/B:HREV.0000011392.03037.7e. [PubMed: 14739766].
  • 23. van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113(16):1966-73. doi: 10.1161/CIRCULATIONAHA.105.587519. [PubMed: 16618817].
  • 24. Selby DE, Palmer BM, LeWinter MM, Meyer M. Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol. 2011;58(2):147-54. doi: 10.1016/j.jacc.2010.10.069. [PubMed: 21718911]. [PubMed Central: PMC3147146].
  • 25. Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kuhl U, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57(8):977-85. doi: 10.1016/j.jacc.2010.10.024. [PubMed: 21329845].
  • 26. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111(6):774-81. doi: 10.1161/01.CIR.0000155257.33485.6D. [PubMed: 15699264].
  • 27. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388-400. doi: 10.1161/CIRCULATIONAHA.113.001878. [PubMed: 23877061]. [PubMed Central: PMC3801217].
  • 28. Weeks KL, McMullen JR. The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda). 2011;26(2):97-105. doi: 10.1152/physiol.00043.2010. [PubMed: 21487028].
  • 29. Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res. 2015;116(8):1462-76. doi: 10.1161/CIRCRESAHA.116.304937. [PubMed: 25858069]. [PubMed Central: PMC4394185].
  • 30. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation. 1993;87(5 Suppl):IV90-6. [PubMed: 8097970].
  • 31. Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013;14(1):38-48. doi: 10.1038/nrm3495. [PubMed: 23258295]. [PubMed Central: PMC4416212].
  • 32. Schiattarella GG, Hill JA. Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 2015;131(16):1435-47. doi: 10.1161/CIRCULATIONAHA.115.013894. [PubMed: 25901069]. [PubMed Central: PMC4408778].
  • 33. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589-600. doi: 10.1038/nrm1983. [PubMed: 16936699].
  • 34. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191-227. doi: 10.1016/j.pharmthera.2010.04.005. [PubMed: 20438756].
  • 35. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56-64. doi: 10.1172/JCI108079. [PubMed: 124746]. [PubMed Central: PMC436555].
  • 36. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001;104(3):330-5. [PubMed: 11457753].
  • 37. Sawada K, Kawamura K. Architecture of myocardial cells in human cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quantitative scanning electron microscopy. Heart Vessels. 1991;6(3):129-42. [PubMed: 1833369].
  • 38. Yamamoto S, James TN, Sawada K, Okabe M, Kawamura K. Generation of new intercellular junctions between cardiocytes. A possible mechanism compensating for mechanical overload in the hypertrophied human adult myocardium. Circ Res. 1996;78(3):362-70. [PubMed: 8593694].
  • 39. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370-82. [PubMed: 14417346].
  • 40. Linzbach AJ. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol. 1976;18(0):1-14. doi: 10.1159/000399507. [PubMed: 136171].
  • 41. Kehat I, Davis J, Tiburcy M, Accornero F, Saba-El-Leil MK, Maillet M, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108(2):176-83. doi: 10.1161/CIRCRESAHA.110.231514. [PubMed: 21127295]. [PubMed Central: PMC3032171].
  • 42. Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T. A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol. 2005;38(5):777-86. doi: 10.1016/j.yjmcc.2005.02.012. [PubMed: 15850571].
  • 43. Müller AL, Dhalla NS. Differences in concentric cardiac hypertrophy and eccentric hypertrophy. Cardiac Adaptations. New York: Springer; 2013. p. 147-66.
  • 44. Laughlin MH. Cardiovascular response to exercise. Adv Physiol Educ. 1999;277(6):244-59. doi: 10.1152/advances.1999.277.6.S244.
  • 45. Vella CA, Robergs RA. A review of the stroke volume response to upright exercise in healthy subjects. Br J Sports Med. 2005;39(4):190-5. doi: 10.1136/bjsm.2004.013037. [PubMed: 15793084]. [PubMed Central: PMC1725174].
  • 46. Gulati M, Shaw LJ, Thisted RA, Black HR, Bairey Merz CN, Arnsdorf MF. Heart rate response to exercise stress testing in asymptomatic women: the st. James women take heart project. Circulation. 2010;122(2):130-7. doi: 10.1161/CIRCULATIONAHA.110.939249. [PubMed: 20585008].
  • 47. Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123(9):1010-20. doi: 10.1161/CIRCULATIONAHA.110.940577. [PubMed: 21382903]. [PubMed Central: PMC3065291].
  • 48. Higginbotham MB, Morris KG, Williams RS, Coleman RE, Cobb FR. Physiologic basis for the age-related decline in aerobic work capacity. Am J Cardiol. 1986;57(15):1374-9. [PubMed: 3717040].
  • 49. Lauer MS, Francis GS, Okin PM, Pashkow FJ, Snader CE, Marwick TH. Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA. 1999;281(6):524-9. [PubMed: 10022108].
  • 50. Kappagoda T, Amsterdam EA. Exercise and heart failure in the elderly. Heart Fail Rev. 2012;17(4-5):635-62. doi: 10.1007/s10741-011-9297-4. [PubMed: 22327748].
  • 51. Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res. 2016;118(2):279-95. doi: 10.1161/CIRCRESAHA.115.305250. [PubMed: 26838314]. [PubMed Central: PMC4914047].
  • 52. Ogawa T, Spina RJ, Martin WH 3rd, Kohrt WM, Schechtman KB, Holloszy JO, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992;86(2):494-503. [PubMed: 1638717].
  • 53. Stratton JR, Levy WC, Cerqueira MD, Schwartz RS, Abrass IB. Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation. 1994;89(4):1648-55. [PubMed: 8149532].
  • 54. Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2 max. J Appl Physiol (1985). 1988;65(3):1147-51. doi: 10.1152/jappl.1988.65.3.1147. [PubMed: 3182484].
  • 55. Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol. 2012;60(2):120-8. doi: 10.1016/j.jacc.2012.02.055. [PubMed: 22766338]. [PubMed Central: PMC3429944].
  • 56. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56(11):845-54. doi: 10.1016/j.jacc.2010.03.077. [PubMed: 20813282]. [PubMed Central: PMC2950645].
  • 57. Fleg JL, O'Connor F, Gerstenblith G, Becker LC, Clulow J, Schulman SP, et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol (1985). 1995;78(3):890-900. doi: 10.1152/jappl.1995.78.3.890. [PubMed: 7775334].
  • 58. Pluim BM, Lamb HJ, Kayser HW, Leujes F, Beyerbacht HP, Zwinderman AH, et al. Functional and metabolic evaluation of the athlete's heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation. 1998;97(7):666-72. [PubMed: 9495302].
  • 59. Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985). 2008;104(4):1121-8. doi: 10.1152/japplphysiol.01170.2007. [PubMed: 18096751].
  • 60. Colan SD. Mechanics of left ventricular systolic and diastolic function in physiologic hypertrophy of the athlete's heart. Cardiol Clin. 1997;15(3):355-72. [PubMed: 9276162].
  • 61. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG. Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci (Lond). 2002;103(3):249-57. doi: 10.1042/cs1030249. [PubMed: 12193150].
  • 62. Lalande S, Baldi JC. Left ventricular mass in elite olympic weight lifters. Am J Cardiol. 2007;100(7):1177-80. doi: 10.1016/j.amjcard.2007.05.036. [PubMed: 17884384].
  • 63. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985). 1985;58(3):785-90. doi: 10.1152/jappl.1985.58.3.785. [PubMed: 3980383].
  • 64. Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM. Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology. 2010;257(1):71-9. doi: 10.1148/radiol.10092377. [PubMed: 20807850].
  • 65. Fagard R. Athlete's heart. Heart. 2003;89(12):1455-61. [PubMed: 14617564]. [PubMed Central: PMC1767992].
  • 66. Mihl C, Dassen WR, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008;16(4):129-33. [PubMed: 18427637]. [PubMed Central: PMC2300466].
  • 67. Serra AJ, Higuchi ML, Ihara SS, Antonio EL, Santos MH, Bombig MT, et al. Exercise training prevents beta-adrenergic hyperactivity-induced myocardial hypertrophy and lesions. Eur J Heart Fail. 2008;10(6):534-9. doi: 10.1016/j.ejheart.2008.03.016. [PubMed: 18502686].
  • 68. Serra AJ, Santos MH, Bocalini DS, Antonio EL, Levy RF, Santos AA, et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J Physiol. 2010;588(Pt 13):2431-42. doi: 10.1113/jphysiol.2010.187310. [PubMed: 20442263]. [PubMed Central: PMC2915518].
  • 69. Fernandes T, Soci UP, Oliveira EM. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res. 2011;44(9):836-47. [PubMed: 21881810].
  • 70. Wang Y, Wisloff U, Kemi OJ. Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res. 2010;59(5):633-44. [PubMed: 20406038].
  • 71. Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol. 2014;50:9-18. doi: 10.1016/j.exger.2013.11.006. [PubMed: 24280067].
  • 72. Choi SY, Chang HJ, Choi SI, Kim KI, Cho YS, Youn TJ, et al. Long-term exercise training attenuates age-related diastolic dysfunction: association of myocardial collagen cross-linking. J Korean Med Sci. 2009;24(1):32-9. doi: 10.3346/jkms.2009.24.1.32. [PubMed: 19270810]. [PubMed Central: PMC2650965].
  • 73. Wang W, Zhang H, Xue G, Zhang L, Zhang W, Wang L, et al. Exercise training preserves ischemic preconditioning in aged rat hearts by restoring the myocardial polyamine pool. Oxid Med Cell Longev. 2014;2014:457429. doi: 10.1155/2014/457429. [PubMed: 25404991]. [PubMed Central: PMC4227379].
  • 74. Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006;20(6):791-3. doi: 10.1096/fj.05-5116fje. [PubMed: 16459353].
  • 75. Rossoni LV, Oliveira RA, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK, et al. Cardiac benefits of exercise training in aging spontaneously hypertensive rats. J Hypertens. 2011;29(12):2349-58. doi: 10.1097/HJH.0b013e32834d2532. [PubMed: 22045123].
  • 76. Huang CY, Yang AL, Lin YM, Wu FN, Lin JA, Chan YS, et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol (1985). 2012;112(5):883-91. doi: 10.1152/japplphysiol.00605.2011. [PubMed: 22207725].
  • 77. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol. 2006;291(3):H1290-8. doi: 10.1152/ajpheart.00820.2005. [PubMed: 16617130].
  • 78. Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr). 2014;36(5):9706. doi: 10.1007/s11357-014-9706-4. [PubMed: 25148910]. [PubMed Central: PMC4453937].
  • 79. Yamashita K, Kajstura J, Discher DJ, Wasserlauf BJ, Bishopric NH, Anversa P, et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res. 2001;88(6):609-14. [PubMed: 11282895].
  • 80. Liao PH, Hsieh DJ, Kuo CH, Day CH, Shen CY, Lai CH, et al. Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts. Oncotarget. 2015;6(34):35383-94. doi: 10.18632/oncotarget.6168. [PubMed: 26496028]. [PubMed Central: PMC4742112].
  • 81. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097-104. doi: 10.1161/CIRCULATIONAHA.105.595231. [PubMed: 16636172].
  • 82. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996;271(30):17920-6. [PubMed: 8663524].
  • 83. Gioscia-Ryan RA, Battson ML, Cuevas LM, Zigler MC, Sindler AL, Seals DR. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY). 2016;8(11):2897-914. doi: 10.18632/aging.101099. [PubMed: 27875805]. [PubMed Central: PMC5191877].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments