Journal of Clinical Research in Paramedical Sciences

Published by: Kowsar

The Effects of Six Weeks High Intensity Interval Training on Amyloid Beta1-42 Peptide in Hippocampus of Rat Model of Alzheimer's Disease Induced with STZ

Shokufeh Naderi 1 , * , Abdolhamid Habibi 1 , Mahnaz Kesmati 2 , Anahita Rezaie 3 and Mohsen Ghanbarzadeh 1
Authors Information
1 Department of Exercise Physiology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Article information
  • Journal of Clinical Research in Paramedical Sciences: December 31, 2018, 7 (2); e86866
  • Published Online: December 25, 2018
  • Article Type: Research Article
  • Received: November 28, 2018
  • Revised: December 9, 2018
  • Accepted: December 10, 2018
  • DOI: 10.5812/jcrps.86866

To Cite: Naderi S, Habibi A, Kesmati M, Rezaie A, Ghanbarzadeh M. The Effects of Six Weeks High Intensity Interval Training on Amyloid Beta1-42 Peptide in Hippocampus of Rat Model of Alzheimer's Disease Induced with STZ, J Clin Res Paramed Sci. 2018 ; 7(2):e86866. doi: 10.5812/jcrps.86866.

Copyright © 2018, Journal of Clinical Research in Paramedical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Iranmanesh F, Sayyadi A, Fayegh A, Shafiee Z. [Surveying of estrogen and progesterone effects on electroencephalogram and mini - mental status exam ination (MMSE) in female patients with alzheimer's disease]. J Birjand Univ Med Sci. 2006;13(2):9-15. Persian.
  • 2. Siahmard Z, Alaei H, Reisi P, Pilehvarian AA. [Evaluation of the effects of red grape juice on alzheimer's disease in rats]. J Isfahan Med School. 2012;29(167):2383-90. Persian.
  • 3. Robinson MM, Lowe VJ, Nair KS. Increased brain glucose uptake after 12 weeks of aerobic high-intensity interval training in young and older adults. J Clin Endocrinol Metabol. 2017;103(1):221-7.
  • 4. Souza LC, Carlos Filho B, Goes ATR, Del Fabbro L, de Gomes MG, Savegnago L, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by β-amyloid1–40 peptide. Neurotox Res. 2013;24(2):148-63.
  • 5. Lopez-Camacho PY, Guzman-Hernandez R, Hernandez Gonzalez VH, Diaz Munoz JE, Garcia-Sierra F, Basurto-Islas G. [Research and therapeutics in Alzheimer's disease based on amyloid beta and tau]. Neurosci Arch. 2018;22(2):72-88. Spanish.
  • 6. Kang EB, Cho JY. Effects of treadmill exercise on brain insulin signaling and beta-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutrition Biochem. 2014;18(1):89-96. doi: 10.5717/jenb.2014.18.1.89. [PubMed: 25566443]. [PubMed Central: PMC4241930].
  • 7. Qiang W, Yau WM, Lu JX, Collinge J, Tycko R. Structural variation in amyloid-beta fibrils from Alzheimer's disease clinical subtypes. Nature. 2017;541(7636):217-21. doi: 10.1038/nature20814. [PubMed: 28052060]. [PubMed Central: PMC5233555].
  • 8. Kumar A, Singh A; Ekavali. A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacol Rep. 2015;67(2):195-203. doi: 10.1016/j.pharep.2014.09.004. [PubMed: 25712639].
  • 9. Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, et al. Effects of hydrated forms of C60 fullerene on amyloid β-Peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol. 2007;7(4-5):1479-85. doi: 10.1166/jnn.2007.330. [PubMed: 17450915].
  • 10. Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc. 1997;45(6):718-24. [PubMed: 9180666].
  • 11. Kraska A, Santin MD, Dorieux O, Joseph-Mathurin N, Bourrin E, Petit F, et al. In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS ONE. 2012;7(9). e46196. doi: 10.1371/journal.pone.0046196. [PubMed: 23049978]. [PubMed Central: PMC3458017].
  • 12. Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of β-amyloidosis in a mouse model of alzheimer's disease. PLoS ONE. 2012;7(3). e32792. doi: 10.1371/journal.pone.0032792. [PubMed: 22403710]. [PubMed Central: PMC3293895].
  • 13. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol. 2010;223(2):422-31. doi: 10.1016/j.expneurol.2009.11.005. [PubMed: 19931251]. [PubMed Central: PMC2864332].
  • 14. Jahangiri L, Kesmati M, Najafzadeh H. Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci. 2013;17(20):2706-10. [PubMed: 24174350].
  • 15. Bassani TB, Bonato JM, Machado MMF, Cóppola-Segovia V, Moura ELR, Zanata SM, et al. Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats. Molec Neurobiol. 2018;55(5):4280-96. doi: 10.1007/s12035-017-0645-9. [PubMed: 28623617].
  • 16. Grunblatt E, Koutsilieri E, Hoyer S, Riederer P. Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimer Diseas. 2006;9(3):261-71. doi: 10.3233/jad-2006-9305. [PubMed: 16914836].
  • 17. Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol (1985). 2006;101(4):1237-42. doi: 10.1152/japplphysiol.00500.2006. [PubMed: 16778001].
  • 18. Liu HL, Zhao G, Zhang H, Shi LD. Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res. 2013;256:261-72. doi: 10.1016/j.bbr.2013.08.008. [PubMed: 23968591].
  • 19. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Dis. 2009;35(3):426-32. doi: 10.1016/j.nbd.2009.06.002. [PubMed: 19524672]. [PubMed Central: PMC2745233].
  • 20. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Inter J Molec Med. 2008;22(4):529-39. [PubMed: 18813861].
  • 21. Parachikova A, Nichol KE, Cotman CW. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis. 2008;30(1):121-9. doi: 10.1016/j.nbd.2007.12.008. [PubMed: 18258444]. [PubMed Central: PMC2386749].
  • 22. Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J Neuroinflammation. 2008;5:13. doi: 10.1186/1742-2094-5-13. [PubMed: 18400101]. [PubMed Central: PMC2329612].
  • 23. Bo H, Kang W, Jiang N, Wang X, Zhang Y, Ji LL. Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxid Med Cell Longev. 2014;2014:834502. doi: 10.1155/2014/834502. [PubMed: 25538817]. [PubMed Central: PMC4236906].
  • 24. Godin G, Desharnais R, Valois P, Lepage L, Jobin J, Bradet R. Differences in perceived barriers to exercise between high and low intenders: Observations among different populations. Am J Health Promot. 2016;8(4):279-85. doi: 10.4278/0890-1171-8.4.279.
  • 25. Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575(Pt 3):901-11. doi: 10.1113/jphysiol.2006.112094. [PubMed: 16825308]. [PubMed Central: PMC1995688].
  • 26. Schmitz B, Nelis P, Rolfes F, Alnawaiseh M, Klose A, Kruger M, et al. Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis. 2018;274:8-15. doi: 10.1016/j.atherosclerosis.2018.04.028. [PubMed: 29747089].
  • 27. Lamb SE, Sheehan B, Atherton N, Nichols V, Collins H, Mistry D, et al. Dementia and physical activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: Randomised controlled trial. BMJ. 2018;361:k1675. doi: 10.1136/bmj.k1675. [PubMed: 29769247]. [PubMed Central: PMC5953238].
  • 28. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077-84. doi: 10.1113/jphysiol.2011.224725. [PubMed: 22289907]. [PubMed Central: PMC3381816].
  • 29. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(6):1278-83. doi: 10.1152/jappl.1979.47.6.1278. [PubMed: 536299].
  • 30. Leandro CG, Levada AC, Hirabara SM, Manhaes-de-Castro R, De-Castro CB, Curi R, et al. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. J Strength Cond Res. 2007;21(3):751-6. doi: 10.1519/R-20155.1. [PubMed: 17685693].
  • 31. Paxinos GAWC, Watson C. The rat brain atlas in stereotaxic coordinates. 3rd ed. San Diego: Academic Press; 1997.
  • 32. Rupinder KS, Nirmal S. All-trans retinoic acid rescues memory deficits and neuropathological changes in mouse model of streptozotocin-induced dementia of Alzheimer's type. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:38-46. doi: 10.1016/j.pnpbp.2012.09.012. [PubMed: 23044340].
  • 33. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 2002;297(5580):353-6. doi: 10.1126/science.1072994. [PubMed: 12130773].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments