Journal of Clinical Research in Paramedical Sciences

Published by: Kowsar

Effects of Different Intensities of a Nine-Week Resistance Training on Serum Levels of Malondialdehyde in Young Sedentary Men

Ali Zabet 1 , * , Farshad Ghazalian 1 , ** and Hojatallah Nik-Bakht 1
Authors Information
1 Department of Physical Education, Science and Research Branch, Islamic Azad University, Tehran, Iran
Corresponding Authors:
Article information
  • Journal of Clinical Research in Paramedical Sciences: 8 (1); e88093
  • Published Online: January 28, 2019
  • Article Type: Research Article
  • Received: December 23, 2018
  • Accepted: December 29, 2018
  • DOI: 10.5812/jcrps.88093

To Cite: Zabet A , Ghazalian F, Nik-Bakht H. Effects of Different Intensities of a Nine-Week Resistance Training on Serum Levels of Malondialdehyde in Young Sedentary Men, J Clin Res Paramed Sci. Online ahead of Print ; 8(1):e88093. doi: 10.5812/jcrps.88093.

Abstract
Copyright © 2019, Journal of Clinical Research in Paramedical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-205. [PubMed: 6291524].
  • 2. Baraibar MA, Ladouce R, Friguet B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics. 2013;92:63-70. doi: 10.1016/j.jprot.2013.05.008. [PubMed: 23689083].
  • 3. Ceci R, Beltran Valls MR, Duranti G, Dimauro I, Quaranta F, Pittaluga M, et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol. 2014;2:65-72. doi: 10.1016/j.redox.2013.12.004. [PubMed: 25460722]. [PubMed Central: PMC4297938].
  • 4. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077-84. doi: 10.1113/jphysiol.2011.224725. [PubMed: 22289907]. [PubMed Central: PMC3381816].
  • 5. Ji LL. Antioxidants and oxidative stress in exercise. P Soc Exp Biol Med. 1999;222(3):283-92. doi: 10.1046/j.1525-1373.1999.d01-145.x.
  • 6. Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med. 2001;31(7):911-22. [PubMed: 11585710].
  • 7. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28(3):309-17. doi: 10.1080/02640410903473844. [PubMed: 20077275].
  • 8. Lima FD, Stamm DN, Della-Pace ID, Dobrachinski F, de Carvalho NR, Royes LF, et al. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS One. 2013;8(2). e55668. doi: 10.1371/journal.pone.0055668. [PubMed: 23405192]. [PubMed Central: PMC3565999].
  • 9. Ramel A, Wagner KH, Elmadfa I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr. 2004;43(1):2-6. doi: 10.1007/s00394-004-0432-z. [PubMed: 14991263].
  • 10. Vincent HK, Bourguignon C, Vincent KR. Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity (Silver Spring). 2006;14(11):1921-30. doi: 10.1038/oby.2006.224. [PubMed: 17135607].
  • 11. Du Z, Yang Y, Hu Y, Sun Y, Zhang S, Peng W, et al. A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats. Hear Res. 2012;287(1-2):15-24. doi: 10.1016/j.heares.2012.04.012. [PubMed: 22543089].
  • 12. Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H, et al. Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab. 2011;300(3):E581-91. doi: 10.1152/ajpendo.00455.2010. [PubMed: 21224483].
  • 13. Ronnestad BR, Mujika I. Optimizing strength training for running and cycling endurance performance: A review. Scand J Med Sci Sports. 2014;24(4):603-12. doi: 10.1111/sms.12104. [PubMed: 23914932].
  • 14. Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21(4):301-14. doi: 10.1111/micc.12117. [PubMed: 24450403].
  • 15. Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev. 2007;128(3):267-75. doi: 10.1016/j.mad.2006.12.006. [PubMed: 17224177].
  • 16. Azizbeigi K, Stannard SR, Atashak S, Mosalman Haghighi M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J Exerc Sci Fit. 2014;12(1):1-6. doi: 10.1016/j.jesf.2013.12.001.
  • 17. Azizbeigi K, Azarbayjani MA, Peeri M, Agha-alinejad H, Stannard S. The effect of progressive resistance training on oxidative stress and antioxidant enzyme activity in erythrocytes in untrained men. Int J Sport Nutr Exerc Metab. 2013;23(3):230-8. [PubMed: 23239675].
  • 18. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988;20(5 Suppl):S132-4. [PubMed: 3057312].
  • 19. Prior SJ, Blumenthal JB, Katzel LI, Goldberg AP, Ryan AS. Increased skeletal muscle capillarization after aerobic exercise training and weight loss improves insulin sensitivity in adults with IGT. Diabetes Care. 2014;37(5):1469-75. doi: 10.2337/dc13-2358. [PubMed: 24595633]. [PubMed Central: PMC3994928].
  • 20. Ashok BT, Ali R. The aging paradox: Free radical theory of aging. Exp Gerontol. 1999;34(3):293-303. [PubMed: 10433385].
  • 21. Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev. 2012;2012:756132. doi: 10.1155/2012/756132. [PubMed: 22701757]. [PubMed Central: PMC3372226].
  • 22. Armstrong D. Free radicals in diagnostic medicine: A systems approach to laboratory technology, clinical correlations, and antioxidant therapy. 366. Springer Science & Business Media; 2012.
  • 23. Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5(2):356-77. doi: 10.3390/biom5020356. [PubMed: 25866921]. [PubMed Central: PMC4496677].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments